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1. (a) xat plotted w.r.t. t
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Figure 1: Plot of bandpass signal xat

(b) Calculating appropriate Fs

1 %% part b
2 % Fs must ≥ 2*bandwidth, bandwidth = 1950
3 Fc = 65000;
4 k = floor(Fc / B − 0.5);
5 Fs = 4 * Fc / (2 * k + 1);
6

7 % For Fc = 65kHz, B = 1.95kHz: Fs = 4kHz

(c) Calculating xanT

1 %% part c, slides approach
2 % calculate time variables
3 ∆T = 1e−6;
4 tfinal = 0.25;
5 t = 0:∆T:tfinal;
6

7 % calculate sampling interval and how many samples
8 Ts = 1 / Fs;
9 nfinal = tfinal / Ts;

10 n = 0:nfinal;
11

12 % sample analog signal at rate of sampling interval, plot
13 xanT = xat(1:round(Ts / ∆T):end);
14 stem(t(1:round(Ts / ∆T):end), xanT);
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Figure 2: Stem of sampled xanT

NOTE: This method, which is outlined in the slides, is inflexible when it comes to
changing Fc, B, and deltaT; there is inconsistency with the sampling and matching
of indicies when those variables fluctuate. Below I have a more flexible approach,
which works all of the time, and yields the same absolute error at the end as the
textbook approach:

1 %% part c, my approach
2 % calculate time variables
3 ∆T = 1e−6;
4 tfinal = 0.25;
5 t = 0:∆T:tfinal;
6

7 % calculate sampling interval and how many samples
8 Ts = 1 / Fs;
9 nfinal = tfinal / Ts;

10 n = 0:nfinal;
11

12 % preallocate memory for indicies of analog signal
13 nT i = zeros(size(n));
14

15 % loop through and find indicies where n*Ts = t
16 for i = n
17 nT i(i + 1) = find(round(i * Ts, 6) == t);
18 end
19

20 % sample at indicies where n*Ts = t, plot
21 xanT = xat(nT i);
22 nT = t(nT i);
23 stem(nT, xanT);
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(d) Calculating xIn and xQn

1 %% part d
2 % multiply xanT by cos(0.5 pi n) for all even indicies to get xIn
3 xIn = xanT(1:2:end) .* cos(0.5 * pi * n(1:2:end));
4 % multiply xanT by sin(0.5 pi n) for all odd indicies to get −xQn
5 xQn = −xanT(2:2:end) .* sin(0.5 * pi * n(2:2:end));

(e) Plot of xIn and xQn
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Figure 3: Stem of xIn above xQn

(f) Calculating absolute error between in-phase component and the variable xIn_true,
as well as the quad-phase component with the variable xQn_true

1 %% part f
2 % absolute error: xIn
3 error I = abs(xIn − xIn true);
4 % absolute error: xQn
5 error Q = abs(xQn − xQn true);

(g) Plot of absolute errors calculated in part (f).
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Figure 4: Absolute error of xIn and xQn

2. Given that x(n) is defined as

x(n) ≡ xa(nTs) =

∫ mB

(m−1)B
Xa(F )ej2πFtdF +

∫ −(m−1)B
−mB

Xa(F )ej2πFtdF

And we know that the spectrum of the analog signal is represented by

Xa(F ) =
1

Fs
X(F ), (m− 1)B < |F | < mB

We can rewrite the identity as

xa(nTs) = xa(t) =

∫ mB

(m−1)B

[
1

Fs
X(F )

]
ej2πFtdF +

∫ −(m−1)B
−mB

[
1

Fs
X(F )

]
ej2πFtdF

X(F ) is the frequency domain representation of discrete time signal x(n), meaning that
the following discrete Fourier transform equates the two

X(F ) =

∞∑
n=−∞

x(n)e−j
2πFn
Fs

Plug that in to what we have above to get

1

Fs

∫ mB

(m−1)B

[ ∞∑
n=−∞

x(n)e−j
2πFn
Fs

]
ej2πFtdF+

1

Fs

∫ −(m−1)B
−mB

[ ∞∑
n=−∞

x(n)e−j
2πFn
Fs

]
ej2πFtdF
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1

Fs

[∫ mB

(m−1)B

( ∞∑
n=−∞

x(n)

)
ej2πF(t− n

Fs
)dF +

∫ −(m−1)B
−mB

( ∞∑
n=−∞

x(n)

)
ej2πF(t− n

Fs
)dF

]

Substitute 1
Fs

= Ts inside the integral. Pull out summations, since independent of F

1

Fs

∞∑
n=−∞

x(n)

[∫ mB

(m−1)B
ej2πF (t−nTs)dF +

∫ −(m−1)B
−mB

ej2πF (t−nTs)dF

]

Evaluate the integral

1

Fs

∞∑
n=−∞

x(n)

[
ej2πF (t−nTs)

j2π(t− nTs)

∣∣∣∣mB
(m−1)B

+
ej2πF (t−nTs)

j2π(t− nTs)

∣∣∣∣−(m−1)B
−mB

]

1

Fs

∞∑
n=−∞

x(n)
1

π(t− nTs)

(
1

2j

)[(
ej(mB)(2π)(t−nTs) − e−j(mB)(2π)(t−nTs)

)
+
(
ej(B−mB)(2π)(t−nTs) − e−j(B−mB)(2π)(t−nTs)

)]
1

Fs

∞∑
n=−∞

x(n)
1

π(t− nTs)
(sin 2π(mB)(t− nTs) + sin 2π(B −mB)(t− nTs))

Substitute

Fs = 2B,m =
Fc
B

+
1

2

1

2B

∞∑
n=−∞

x(n)
1

π(t− nTs)

(
sin 2π(Fc +

B

2
)(t− nTs) + sin 2π(−Fc +

B

2
)(t− nTs)

)

We use the identity

sin(α) + sin(β) = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
to reduce the form down to

∞∑
n=−∞

x(n)
1

2πB(t− nTs)

(
2 sin

2πB(t− nTs)
2

cos
2π(2Fc)(t− nTs)

2

)

xa(t) =

∞∑
n=−∞

x(n)
sinπB(t− nTs)
πB(t− nTs)

cos 2πFc(t− nTs)
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3. (a) Given xa(t)’s spectrum resembles a triangle function ranging from -25 to 25Hz, it
will be convoluted with the cos(2π175t) at ±175Hz and scaled down by a half. The
range of Ya(f) will then be -200 to 200Hz, meaning the minimum sampling rate Fs
is 400Hz.

(b) The ideal reconstruction function ga(t)’s spectrum is multiplied with Y (f) in order
to reconstruct the signal. Since during sampling an impulse train causes repetitions
of the signal in the frequency domain, it must be low-passed to get rid of these
unwanted frequencies. That’s where Ga(f) equals 0. The rest of Ga(f) must scale
Y (f) back down to normal size, since during sampling it was scaled up by a factor
of Fs,A/D, so this part will uniformly equal 1

Fs,A/D
.

This means

Ga(f) =

{
1

Fs,A/D
, |F | < Fs,A/D

2

0, otherwise

Where Fs,A/D = 400Hz, so that

Ga(f) =
1

400
Π

(
1

400

)
⇐⇒ ga(t) = sinc(400t)

(c) Plot of Ga(f)
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Figure 5: Spectrum of ga(t)

4. Same xa(t) from 3., but with a new bandpass signal.

(a) Plot of Ya(f)
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Figure 6: Spectrum of ya(t)

(b) Minimum sampling rate Fs to obtain in-phase and quadrature-phase components of
the bandpass signal is determined by the following formula

Fs =
4Fc

2k + 1

where Fc = 200Hz (from ya(t)), k = bFcB −
1
2c, and B = bandwidth of the bandpass

signal xa(t) = 50Hz. So

Fs =
4(200)

2(3) + 1
≈ 114.29Hz

5. (a) If xa(t) undergoes quadrature demodulation, 2 sinusoids in quadrature, oscillating
at the carrier frequency of xa(t), are mixed with xa(t) to get the in-phase and
quadrature-phase components of xa(t), which are useful for bandpass signal recon-
struction and analysis. However, after mixing, a lowpass filter must be applied to
the resulting product x̂a(t) to get the envelope of x̂a(t), which are the in/quadrature-
phase components of xa(t). It is given that the bandwidth of both xI(t) and xQ(t) do
not exceed Fc

8 . Therefore, the lowpass filter, H(f), has the following characteristics

H(f) =

{
2, |F | < Fc

8

0, otherwise

where
Y (f) = X̂a(f)H(f)

The amplitude is 2 due to the fact that the bandpass signal gets modulated twice
(magnitude is halved twice), but during the second modulation, the negative and
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positive frequencies constructively interfere to increase magnitude by 2. So if the
bandpass signal starts with amplitude A, it must maintain amplitude A after demod-
ulation. Amplitude becomes A

2 when modulated with carrier frequency, amplitude

becomes 2A
4 = A

2 when modulated again for demodulation, so our lowpass filter must
multiply the result by 2 to get back to A. This can be seen in the graphs below
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Figure 7: Real component of xa(t)
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Figure 8: Complex component of xa(t)

And since in this example we multiply by a cos, we get the spectrum for x̂a(t):
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Figure 9: B ≤ Fc
8

(b) Have to show the following

y(t) = x̂a(t) ? h(t) = −xQ(t)

Since
xa(t) = xI(t) cos(2πFct)− xQ(t) sin(2πFct)

and to find xQ(t), we demodulate using

x̂a(t) = xa(t) sin(2πFct)

then we can simply say

y(t) = [(xI(t) cos(2πFct)− xQ(t) sin(2πFct)) sin(2πFct)] ? h(t) = −xQ(t)

Let’s drop the convolution for now, since all h(t) is just a lowpass filter, so we have

x̂a(t) = xI(t) cos(2πFct) sin(2πFct)− xQ(t) sin2(2πFct)

Multiplication is convolution in the frequency domain, so let’s determine the trigono-
metric convolutions independently of xI(t) and xQ(t):

cos(2πFct) sin(2πFct)⇐⇒
1

2
(δ(f − fc) + δ(f + fc)) ?−

j

2
(δ(f − fc)− δ(f + fc))

− j
4

[δ(f − 2fc)− δ(f) + δ(f)− δ(f + 2fc)]

− j
4

[δ(f − 2fc)− δ(f + 2fc)]

And using the arbitrary bandpass signal in part (a), we can plot this to see it visually
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Figure 10: Component centered at 0Hz is canceled, removing the term after the lowpass filter

As for the sin2 term,
sin(2πFct) sin(2πFct)⇐⇒

− j
2

(δ(f − fc)− δ(f + fc)) ?−
j

2
(δ(f − fc)− δ(f + fc))

−1

4
[δ(f − 2fc)− δ(f)− δ(f) + δ(f + 2fc)]

−1

4
[δ(f − 2fc)− 2δ(f) + δ(f + 2fc)]

Which we can also plot using the same technique above
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Figure 11: Component centered at 0Hz is constructive, keeping the term after the lowpass filter
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So going back to our equation, we can reduce it down to

x̂a(t) = xI(t)(0)− xQ(t)(0.5), |f | ≤ Fc
8

Add in the lowpass filter outlined in part (a)

x̂a(t) ? h(t) = 2(xI(t)(0)− xQ(t)(0.5))

y(t) = x̂a(t) ? h(t) = −xQ(t)
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